
![]() 版权声明
《中国石化报》(电子版)的一切内容(包括但不限于文字、图片、PDF、图表、标志、标识、商标、版面设计、专栏目录与名称、内容分类标准以及为读者提供的任何信息)仅供中国石化报读者阅读、学习研究使用,未经中国石化报社及/或相关权利人书面授权,任何单位及个人不得将《中国石化报》(电子版)所登载、发布的内容用于商业性目的,包括但不限于转载、复制、发行、制作光盘、数据库、触摸展示等行为方式,或将之在非本站所属的服务器上作镜像。否则,中国石化报社将采取包括但不限于网上公示、向有关部门举报、诉讼等一切合法手段,追究侵权者的法律责任。
![]() 日期检索
原料 向多元化方向发展2021年12月28日 来源:
中国石化报 作者:
中长期内(未来10~15年)石油仍是炼化行业的主要原料。受“双碳”目标驱动,乙烷、丙烷和丁烷在原料中的占比增加;纤维素等非粮生物质原料得到广泛应用;以废塑料为主的废弃高分子材料实现低成本回收利用;甲烷、二氧化碳等碳一原料的使用有望实现突破。总之,炼化生产将呈现石油、油田轻烃、乙烷、生物质、废高分子材料、二氧化碳、甲烷等原料多元化供应格局。 生物制造从原料源头上减少碳排放,是传统炼化行业绿色低碳转型升级的重要途径之一。以淀粉和油脂为代表的第一代生物制造处于成熟的商业化阶段。以木质纤维素(如玉米秸秆)为原料的第二代生物制造逐步进入中试和产业化示范阶段。纤维素是典型的非粮生物质原料,主要由碳、氢、氧元素组成,结构上与石油烃类具有较大相似性,可通过生物发酵或化学转化生产乙醇、航煤等液体燃料,也可通过糖类转化为乳酸、甘油、丁二酸、糠醛等平台化合物,最终进入碳二—碳六产业链下游产品。生物催化剂(纤维素酶)是生物制造的核心,也是影响生产成本的主要因素之一,目前技术主要由诺维信和杜邦等公司垄断。由于纤维素本身能量密度低,加之纤维素酶成本高,因此经济性始终是制约生物制造产业发展的瓶颈。Poet-DSM、杜邦、Abengoa、Iogen等公司先后进行了万吨级纤维素乙醇商业示范,但均未进行规模化生产。未来需开发高效、低成本的工业酶制剂,并建立稳定的原料供应体系,以支撑生物制造产业良性发展,助力炼化行业实现绿色低碳发展。 废塑料循环利用兼具减污与减碳的协同效应,已成为减少塑料污染、助力炼化行业迈向“碳中和”的重要举措之一。2019年和2020年,我国废弃塑料累积量分别为6300万吨和7410万吨、回收量分别为1890万吨和1600万吨,回收利用方式主要是物理回收,回收率仅为30%和21%。2021年初以来,国家印发了《关于加快建立健全绿色低碳循环发展经济体系的指导意见》《“十四五”循环经济发展规划》《关于印发汽车产品生产者责任延伸试点实施方案通知》等多项政策法规,强调加强废塑料等再生资源回收利用,构建循环经济发展模式。受政策推动,废塑料回收利用技术受到高度关注,埃克森美孚、北京航天11所、科茂环境等国内外公司通过自主研发或战略合作的方式开发了化学回收技术,其中Sabic TRUCIRCLE是全球首个实现混合废塑料化学循环生产聚合物规模化应用的技术。北京航天11所研发的航天废塑料热裂解技术(SHCP)以低残值废塑料为原料生产裂解油,已完成3000吨/年示范装置试验。化学回收技术的成熟和推广,可减少原生料的消耗,继而减少化工原料需求,从而降低碳排放。另外,开发应用以低残值废塑料为原料的高效、绿色技术也是炼化企业践行生产者责任延伸最直接有效的方式。 甲烷一步法制乙烯技术具有工艺流程短、耗能少、反应过程实现了温室气体零排放等优势,一直很受关注。该技术主要包括甲烷氧化偶联制乙烯(简称OCM)和甲烷无氧一步法制乙烯、芳烃和氢气等产品这两种路线,核心是催化剂。国内外许多研究机构做了大量工作,取得了一些新进展,但一直未收到期望的效果。前者报道的最新进展是2015年Siluria公司与巴西Braskem公司、德国林德公司及沙特阿美石油公司旗下的SAEV公司合作在得克萨斯州建成投运365吨/年的OCM试验装置。中国科学院大连化学物理研究所与中国石油等对后者进行了深入研究,开发出硅化物(氧化硅或碳化硅)晶格限域的单中心铁催化剂,但目前尚未见到中试报道。因此,应加大甲烷制乙烯的研发投入,力争实现催化剂等核心技术的突破,解决专用反应器、分离精制工艺及工程放大技术问题,早日实现工业化应用。 二氧化碳的资源化利用可兼顾发展和减碳,能在碳中和过程中发挥巨大作用,方式主要包括生物转化(光合)、矿化利用、化学品合成等。碳达峰、碳中和目标的提出,使得碳捕集、利用与封存技术受到更多关注,二氧化碳加氢制甲醇、二氧化碳定向转化合成聚酯等生产技术日趋成熟。以焦炭还原二氧化碳为一氧化碳,进而通过生物发酵生产甲醇、乙醇及后续产品的工艺路线,以及二氧化碳逆合成碳氢化合物的研究也正在开展。国际能源署预测,到2050年,碳捕集、利用与封存技术将贡献约14%的二氧化碳减排量。目前,我国二氧化碳年捕集、利用与封存量占年排放量的比重不到万分之二,成本高、效率低是重要制约因素。推动碳捕集、利用与封存技术的规模化发展,离不开政策支持、技术研发、模式创新等协同发力。
中国石油化工集团有限公司版权所有 未经授权,禁止复制或建立镜像 京ICP备 10210212号-7 号 |